

API reference for abeliantensors

abeliantensors is a Python 3 package for symmetric tensors, as used in tensor network algorithms.
For installation instructions, usage examples, and other information, see the README at github.com/mhauru/abeliantensors [https://github.com/mhauru/abeliantensors].
This page contains the API reference of the package.

Contents:

	API reference for abeliantensors
	Symmetric tensor classes

	AbelianTensor

	Tensor

	TensorCommon

	Index

Symmetric tensor classes

	
class abeliantensors.symmetrytensors.TensorU1(shape, qhape=None, qodulus=None, sects=None, dirs=None, dtype=<class 'numpy.float64'>, defval=0, charge=0, invar=True)

	Bases: abeliantensors.abeliantensor.AbelianTensor

A class for U(1) symmetric tensors.

See the parent class AbelianTensor for details.

	
class abeliantensors.symmetrytensors.TensorZ2(shape, *args, qhape=None, qodulus=None, **kwargs)

	Bases: abeliantensors.symmetrytensors.TensorZN

A class for Z2 symmetric tensors.

See the parent class AbelianTensor for details.

	
class abeliantensors.symmetrytensors.TensorZ3(shape, *args, qhape=None, qodulus=None, **kwargs)

	Bases: abeliantensors.symmetrytensors.TensorZN

A class for Z3 symmetric tensors.

See the parent class AbelianTensor for details.

	
class abeliantensors.symmetrytensors.TensorZN(shape, *args, qhape=None, qodulus=None, **kwargs)

	Bases: abeliantensors.abeliantensor.AbelianTensor

A symmetric tensor class for the cyclic group of order N.

See AbelianTensor for the details: A TensorZN is just an
AbelianTensor for which addition of charges is done modulo N.

	
classmethod eye(dim, qim=None, qodulus=None, dtype=<class 'numpy.float64'>)

	Return the identity matrix of the given dimension dim.

	
classmethod from_ndarray(a, *args, shape=None, qhape=None, qodulus=None, **kwargs)

	Build a TensorZN out of a given NumPy array, using the provided
form data.

If qhape is not provided, it is automatically generated based on
shape to be [0, ..., N] for each index. See
AbelianTensor.from_ndarray for more documentation.

	
classmethod initialize_with(numpy_func, shape, *args, qhape=None, qodulus=None, **kwargs)

	Return a tensor of the given shape, initialized with
numpy_func.

	
split_indices(indices, dims, qims=None, dirs=None)

	Split indices in the spirit of reshape.

If qhape is not provided, it is automatically generated based on
shape to be [0, ..., N] for each index. See AbelianTensor.split
for more documentation.

AbelianTensor

	
class abeliantensors.abeliantensor.AbelianTensor(shape, qhape=None, qodulus=None, sects=None, dirs=None, dtype=<class 'numpy.float64'>, defval=0, charge=0, invar=True)

	Bases: abeliantensors.tensorcommon.TensorCommon

A class for symmetry preserving tensors capabable of handling abelian
symmetry groups.

This class is meant to be subclassed to implement specific symmetries,
which can typically be done by simply fixing the qodulus of the class
(see below).

Every AbelianTensor has the following attributes:

shape: A list of dims, one dim per index. Every dim is a list of
integerers that are the dimensions of the different quantum number blocks
along that indices.

qhape: A list of qims, one qim per index. Every qim is a list of
unique integers that are the quantum numbers (qnums), aka charges, of
that index. The quantum numbers are in one-to-one correspondence with the
elements of the dims, so that qhape[i][j] and shape[i][j] are the
qnum and dimension of the same block.

dirs: A list of integers -1 or 1, one for each index. 1 means that the
corresponding index is outgoing, -1 means incoming.

qodulus: An integer or None. If an integer, then all arithmetic on the
quantum numbers is done modulo qodulus. If None then arithmetic on
qnums is just usual integer arithmetic.

sects: A dict of numpy arrays, with combinations of quantum numbers as
keys. Every key must a tuple of quantum numbers, one for each index, and
each one of them being from the qim of that index. The value of the dict
at this key is the block (or “sector” or “sect”) corresponding to these
quantum numbers. If the tensor is invariant under a symmetry (see invar)
then only certain blocks are allowed to be set, but even in such a cause
not all allowed blocks must be set. For the treatement of unset blocks see
defval.

dtype: A NumPy dtype, that is the dtype of all the sects.

defval: The default value that the tensor has everywhere outside the
blocks set in sects. If the tensor is a scalar with no indices then its
value is its defval and it has no blocks. Note that many of the methods -
such as dot and svd - require defval == 0 (and assert this). The
main use of defval != 0 is to be able to handle tensors of boolean
values that arise in comparisons.

charge: An integer such that if invar is True then all the blocks set
in sects must have keys k such that sum_i k[i]*dirs[i] % qodulus ==
charge.

invar: A boolean. If True, then the tensor is invariant under the
symmetry determined by qodulus, in the sense described in the definition
of charge. If False, this condition is ignored and any block can be set.
Note that as with defval, many methods require the tensor to be invariant
and invar == False is mainly used for handling vectors of singular
values and eigenvalues. If invar == True then defval must be 0,
unless the tensor is a scalar of charge 0.

Note that many of these rules are not constantly checked for and can be
broken by the user. In such cases behavior of the class is not guaranteed.
The method check_consistency can be used to check that the tensor
conforms to this definition.

	
all()

	Check whether all of the elements of the tensor are True.

	
allclose(B, rtol=1e-05, atol=1e-08)

	Check whether all of the elements of the two tensors are close to
each other.

See numpy.allclose for explanations of the tolerance arguments.

	
any()

	Check whether any of the elements of the tensor are True.

	
astype(dtype, casting='unsafe', copy=True)

	Change the dtype of the tensor.

By default creates a copy, but works in place if copy=False.

	
average()

	Return the average of all elements.

	
check_consistency()

	Check internal consistency of a tensor.

Check that self conforms to the defition given in the documentation
of the class. If yes, return True, otherwise raise an AssertionError.
This method is meant to be used by the user (probably for debugging)
and is not called anywhere in the class.

	
classmethod check_form_match(tensor1=None, tensor2=None, qhape1=None, shape1=None, dirs1=None, qhape2=None, shape2=None, dirs2=None, qodulus=None)

	Check that the form data of two tensors match.

Check that the given two tensors have the same form in the sense that
if their indices are all flipped to point in the same direction then
both tensors have the same qnums for the same indices and with the
same dimensions. Instead of giving two tensors, sets of qhapes,
shapes, and dirs and a qodulus can also be given.

	
classmethod check_qhape_shape_match(qhape, shape)

	Check that the given qhape and shape match, i.e. are valid for
the same tensor.

	
classmethod check_qim_dim_match(qim, dim)

	Check that the given qim and dim match, i.e. are valid for the
same index.

	
compatible_indices(other, i, j)

	Return True if index i of self may be contracted with index j
of other, False otherwise.

Flipping of indices is allowed (but not done, this is only a check).

	
conj()

	Return a new tensor that is the complex conjugate of this one, with
the directions of all the indices flipped and the charge of negated.

	
conjugate()

	Return a new tensor that is the complex conjugate of this one, with
the directions of all the indices flipped and the charge of negated.

	
copy(memo=None, _nil=[])

	Deep copy operation on arbitrary Python objects.

See the module’s __doc__ string for more info.

	
defblock(key)

	Return an NumPy array of the size of the block self[key], filled
with self.defval.

This works regardless of whether self[key] is set or not and
whether the block is allowed by symmetry.

	
diag()

	Either map a square matrix to a vector of its diagonals or a vector
to diagonal square matrix.

If the input is a vector (which may be non-invariant) with qhape =
[qim], shape = [dim] and dir = [d], then the output is an
invariant matrix with qhape = [qim, qim], shape = [dim, dim]
and dirs = [d, -d].

If the input is a matrix it should be invariant and square in the sense
that its two indices are compatible, i.e. could be contracted with each
other. If self.dirs == [d, d] then the latter is flipped and a
warning is raised. The output is then a non-invariant vector with
dirs = [d].

	
empty_like()

	Initialize a tensor that is like a copy of this one, but with an
empty sects.

	
expand_dims(axis, direction=1)

	Return a view of self that has an additional index at the position
axis.

This new index has only one qnum, 0, and dimension 1. The direction
of the new index is a keyword argument direction that defaults to 1.

	
classmethod eye(dim, qim=None, qodulus=None, dtype=<class 'numpy.float64'>)

	Return an identity tensor of shape = [dim, dim], qhape = [qim,
qim] and dirs = [1, -1].

	
fill(value)

	Set all the elements of the tensor to be value.

This really means all, not just the ones in allowed blocks.

	
flip_dir(axis)

	Flip the direction of the given axis of self.

The operation is not in-place, but a view is returned. The quantum
numbers along given axis are also negated accordingly, so that the
tensor as a whole remains the same.

	
classmethod from_ndarray(a, shape=None, qhape=None, dirs=None, qodulus=None, invar=True, charge=0)

	Build an AbelianTensor out of a given NumPy array, using the
provided form data.

Although shape and qhape are keyword arguments to maintain a common
interface with Tensor, they are not optional. The blocks are read in
the same order as they are written in to_ndarray, i.e. rising qnum
along every index. Note hence that the ordering of the qnums in the
qhape given has no effect.

	
imag()

	Return the imaginary part.

	
classmethod initialize_with(numpy_func, shape, *args, qhape=None, qodulus=None, dirs=None, invar=True, charge=0, **kwargs)

	Create a tensor initialized with a given numpy function.

initialize_with will be called with different numpy_funcs to create
initializer functions such as zeros and random. It sets all the
valid blocks of the new tensor to numpy_func(block_shape, *args,
**kwargs).

	
is_full()

	Return True if the elements in self.sects cover all the elements
in self.

	
is_valid_key(key)

	Return True if key is a valid block allowed by symmetry or
self.invar is False. Otherwise False.

	
isscalar()

	Return True is this tensor is scalar, False otherwise.

	
join_indices(*inds, dirs=None, return_transposed_shape_data=False)

	Join indices together in the spirit of reshape.

inds is either an iterable of indices, in which case they are joined,
or an iterable of iterables of indices, in which case the indices
listed in each element of inds (a “batch”) will be joined. So for
instance inds=[[0,1], [2,3]] causes the joining of both 0 and 1,
and of 2 and 3, at the same time.

Before any joining is done the indices are transposed so that for every
batch of indices to be joined the first remains in place and the others
are moved to be after it in the order given. The order in which the
batches are given does not matter.

dirs are the directions of the new indices, defaults to
[1,...,1]. If a batch of indices to be joined consists of only one
index, its direction will be flipped to be as in dirs.

If return_transposed_shape_data is True, then the shape, qhape
and dirs (in this order) of the tensor after transposing but before
reshaping are returned as well.

The method does not modify the original tensor, but returns a copy or a
view.

	
matrix_dot(other)

	Take the dot product of two tensors of order < 3.

If either one is a matrix, it must be invariant and have defval ==
0.

	
matrix_eig(chis=None, eps=0, print_errors='deprecated', hermitian=False, break_degenerate=False, degeneracy_eps=1e-06, sparse=False, trunc_err_func=None)

	Find eigenvalues and eigenvectors of a matrix.

The input must have defval == 0, invar == True, charge ==
0, and must be square in the sense that the dimensions must have the
same qim and dim and opposing dirs.

If hermitian is True the matrix is assumed to be hermitian.

Truncation works like for SVD, see the docstring there for more.

If sparse is True, a sparse eigenvalue decomposition, using power
methods from scipy.sparse.eigs or eigsh, is used. This
decomposition is done to find max(chis) eigenvalues, after which
the decomposition may be truncated further if the truncation error so
allows. Thus max(chis) should be much smaller than the full size of
the matrix, if sparse is True.

The return value is S, U, rel_err, where S is a non-invariant
vector of eigenvalues and U is a matrix that has as its columns the
eigenvectors. Both have the same dim and qim as self. rel_err is
the truncation error.

	
matrix_svd(chis=None, eps=0, print_errors='deprecated', break_degenerate=False, degeneracy_eps=1e-06, sparse=False, trunc_err_func=None)

	Singular value decompose a matrix.

The matrix must have invar == True and defval == 0.

The optional argument chis is a list of bond dimensions. The SVD is
truncated to one of these dimensions chi, meaning that only chi
largest singular values are kept. If chis is a single integer (either
within a singleton list or just as a bare integer) this dimension is
used. If eps == 0, the largest value in chis is used. Otherwise
the smallest chi in chis is used, such that the relative error made
in the truncation is smaller than eps. The truncation error is by
default the Frobenius norm of the difference, but can be specified with
the keyword agument trunc_err_func.

An exception to the above is made by degenerate singular values. By
default truncation is never done so that some singular values are
included while others of the same value are left out. If this is about
to happen, chi is decreased so that none of the degenerate singular
values are included. This default behavior can be changed with the
keyword argument break_degenerate. The default threshold for when
singular values are considered degenerate is 1e-6. This can be changed
with the keyword argument degeneracy_eps.

If sparse is True, a sparse SVD, using power methods from
scipy.sparse.svds, is used. This SVD is done to find max(chis)
singular values, after which the decomposition may be truncated further
if the truncation error so allows. Thus max(chis) should be much
smaller than the full size of the matrix, if sparse is True.

The method returns the tuple U, S, V, rel_err, where S is a
non-invariant vector and U and V are unitary matrices. They are
such that U.diag(S).V == self, where the equality is appromixate if
there is truncation. U and S have always charge 0, but V has the
same charge as self. U has dirs [d, -d] where d =
self.dirs[0], but V has the same dirs as self. rel_err is the
truncation error.

	
max()

	Return the maximum element.

	
min()

	Return the minimum element.

	
multiply_diag(diag_vect, axis, direction='r')

	Multiply by a diagonal matrix on one axis.

The result of multiply_diag is the same as
self.dot(diag_vect.diag(), (axis, 0))
if direction is “right” or “r” (the diagonal matrix comes from the
right) or
self.dot(diag_vect.diag(), (axis, 1))
if direction is “left” or “l”. This operation is just done without
constructing the full diagonal matrix.

	
real()

	Return the real part.

	
split_indices(indices, dims, qims=None, dirs=None)

	Split indices in the spirit of reshape.

indices is an iterable of indices to be split. dims is an iterable
such that dim_batch=dims[i] is an iterable of lists of dimensions,
each list giving the dimensions along a new index that will come out of
splitting indices[i]. qims correspondingly gives the qims of
the new indices, and dirs gives the new directions.

An example clarifies:
Suppose self has shape [dim1, dim2, dim3, dim4], qhape
[qim1, qim2, qim3, qim4], and dirs [d1,d2,d3,d4]. Suppose
then that indices = [1,3], dims = [[dimA, dimB], [dimC, dimD]],
qims = [[qimA, qimB], [qimC, qimD]] and dirs = [[dA, dB] [dC,
dD]]. Then the resulting tensor will have shape [dim1, dimA,
dimB, dim3, dimC, dimD], qhape [qim1, qimA, qimB, qim3, qimC,
qimD], and dirs [d1, dA, dB, d3, dC, dD]. All this assuming
that that dims and qims are such that joining qimA and qimB
gives qim2, etc.

Instead of a list of indices a single index may be given.
Correspondingly dims, qims and dirs should then have one level of
depth less as well.

split_indices does not modify the original tensor, but returns a copy
or a view.

	
sum()

	Return the sum of all elements.

	
swapaxes(i, j)

	Swap two indices, return a view.

	
to_ndarray()

	Return a corresponding numpy array.

The order of the blocks in the result is such that along every index
the blocks are organized according to rising qnum. Note that this
means that the end result changes if the directions of some of the
indices are flipped before calling to_ndarray. Thus if for example
trace or dot is called on the resulting NumPy array, the result may
be different than for the AbelianTensor if the contraction requires
flipping directions. Similarly taking for example traces and diags
along axes that were not compatible in the AbelianTensor is a
perfectly valid thing to do for the ndarray, and gives different
results.

All these concerns can be avoided by making sure that one only calls on
the ndarray operations that would have been valid on the
AbelianTensor without flipping any directions.

	
trace(axis1=0, axis2=1)

	Take a trace over axis1 and axis2.

This differs from the usual trace in the sense that it is more like
connecting the two indices and contracting. This means that if the
indices axis1 and axis2 don’t have the same dim and qim the
function will raise an error. If the dirs don’t match (both are 1 or
both are -1) then one of them is flipped and a warning is raised.

Note that the diagonal consists always of blocks with the same qnum
on axis1 and axis2 (once dirs are opposite). This means that the
trace of an invariant charge != 0 tensor is always a zero-tensor.

	
transpose(p=(1, 0))

	Transpose indices, return a view.

The optional argument p should be a permutation of all the indices.
By default p=(1, 0), which is the transpose of a matrix.

	
value()

	For a scalar tensor, return the scalar.

	
view()

	Return a view of this tensor.

A view is otherwise independent but identical to the original, but
its sects points to the same numpy arrays as the sects of the
original. In other words changing a whole block is ok, but modifying a
block in place modifies the original as well.

Tensor

	
class abeliantensors.tensor.Tensor

	Bases: abeliantensors.tensorcommon.TensorCommon, numpy.ndarray

A wrapper class for NumPy arrays.

This class implements no new functionality beyond NumPy arrays, but simply
provides them with the same interface that is used by the symmetry
preserving tensor classes. Tensors always have qhape == None, dirs
== None and charge == 0.

Note that Tensor is a subclass of both TensorCommon and
numpy.ndarray, so many NumPy functions work directly on Tensors. It’s
preferable to use methods of the Tensor class instead though, because it
allows to easily switching to a symmetric tensor class without modifying
the code.

	
abs()

	Return the element-wise absolute value.

	
all(*args, **kwargs)

	Return whether all elements are True.

See numpy.ndarray.all for details.

	
allclose(other, *args, **kwargs)

	Return whether self and other are nearly element-wise equal.

See numpy.allclose for details.

	
any(*args, **kwargs)

	Return whether any elements are True.

See numpy.ndarray.any for details.

	
average()

	Return the element-wise average.

	
classmethod check_form_match(tensor1=None, tensor2=None, qhape1=None, shape1=None, dirs1=None, qhape2=None, shape2=None, dirs2=None, qodulus=None)

	Check that the given two tensors have the same form in the sense
that, i.e. that their indices have the same dimensions. Instead of
giving two tensors, two shapes can also be given.

	
compatible_indices(other, i, j)

	Return True if index i of self and index j of other are of
the same dimension.

	
conjugate()

	Return the complex conjugate.

	
diag(**kwargs)

	Return the diagonal of a given matrix, or a diagonal matrix with the
given values on the diagonal.

	
dot(B, indices)

	Dot product of tensors.

See numpy.tensordot on how to use this, the interface is exactly the
same, except that this one is a method, not a function. The original
tensors are not modified.

	
exp()

	Return the element-wise exponential.

	
expand_dims(axis, direction=1)

	Add to self a new singleton index, at position axis.

	
classmethod eye(dim, qim=None, qodulus=None, *args, **kwargs)

	Return the identity matrix of the given dimension dim.

	
fill(value)

	Fill the tensor with a scalar value.

	
flip_dir(axis)

	A no-op, that returns a view.

The corresponding method of AbelianTensor flips the direction of an
index, but directions are meaningless for Tensors.

	
classmethod from_ndarray(a, **kwargs)

	Given an NumPy array, return the corresponding Tensor instance.

	
imag()

	Return the imaginary part.

	
classmethod initialize_with(numpy_func, shape, *args, qhape=None, charge=None, invar=None, dirs=None, **kwargs)

	Use the given numpy_func to initialize a tensor of shape.

	
isscalar()

	Return whether this Tensor is a scalar.

	
join_indices(*inds, return_transposed_shape_data=False, **kwargs)

	Join indices together in the spirit of reshape.

inds is either a iterable of indices, in which case they are joined,
or a iterable of iterables of indices, in which case the indices listed
in each element of inds will be joined.

Before any joining is done the indices are transposed so that for every
batch of indices to be joined the first remains in place and the others
are moved to be after in the order given. The order in which the
batches are given does not matter.

If return_transposed_shape_data is True, then the shape of the tensor
after transposing but before reshaping is returned as well, in addition
to None and None, that take the place of transposed_qhape and
transposed_dirs of AbelianTensor.

The method does not modify the original tensor.

	
log()

	Return the element-wise natural logarithm.

	
matrix_dot(B)

	Take the dot product of two tensors of order < 3 (i.e. vectors or
matrices).

	
matrix_eig(chis=None, eps=0, print_errors='deprecated', hermitian=False, break_degenerate=False, degeneracy_eps=1e-06, sparse=False, trunc_err_func=None)

	Find eigenvalues and eigenvectors of a matrix.

The input must be a square matrix.

If hermitian is True the matrix is assumed to be hermitian.

Truncation works like for SVD, see the documentation there for more.

If sparse is True, a sparse eigenvalue decomposition, using power
methods from scipy.sparse.eigs or eigsh, is used. This
decomposition is done to find max(chis) eigenvalues, after which
the decomposition may be truncated further if the truncation error so
allows. Thus max(chis) should be much smaller than the full size of
the matrix, if sparse is True.

The return values is S, U, rel_err, where S is a vector of
eigenvalues and U is a matrix that has as its columns the
eigenvectors. rel_err is the truncation error.

	
matrix_svd(chis=None, eps=0, print_errors='deprecated', break_degenerate=False, degeneracy_eps=1e-06, sparse=False, trunc_err_func=None)

	Singular value decompose a matrix.

The optional argument chis is a list of bond dimensions. The SVD is
truncated to one of these dimensions chi, meaning that only chi
largest singular values are kept. If chis is a single integer (either
within a singleton list or just as a bare integer) this dimension is
used. If eps == 0, the largest value in chis is used. Otherwise
the smallest chi in chis is used, such that the relative error made
in the truncation is smaller than eps. The truncation error is by
default the Frobenius norm of the difference, but can be specified with
the keyword agument trunc_err_func.

An exception to the above is made by degenerate singular values. By
default truncation is never done so that some singular values are
included while others of the same value are left out. If this is about
to happen, chi is decreased so that none of the degenerate singular
values are included. This default behavior can be changed with the
keyword argument break_degenerate. The default threshold for when
singular values are considered degenerate is 1e-6. This can be changed
with the keyword argument degeneracy_eps.

If sparse is True, a sparse SVD, using power methods from
scipy.sparse.svds, is used. This SVD is done to find max(chis)
singular values, after which the decomposition may be truncated further
if the truncation error so allows. Thus max(chis) should be much
smaller than the full size of the matrix, if sparse is True.

The return value is``U, S, V, rel_err``, where S is a vector and U
and V are unitary matrices. They are such that U.diag(S).V ==
self, where the equality is appromixate if there is truncation.
rel_err is the truncation error.

	
multiply_diag(diag_vect, axis, *args, **kwargs)

	Multiply by a diagonal matrix on one axis.

The result of multiply_diag is the same as
self.dot(diag_vect.diag(), (axis, 0))
This operation is just done without constructing the full diagonal
matrix.

	
real()

	Return the real part.

	
sign()

	Return the element-wise sign.

	
split_indices(indices, dims, qims=None, **kwargs)

	Splits indices in the spirit of reshape.

indices is an iterable of indices to be split. dims is an iterable
of iterables such that dims[i] is an iterable of lists of
dimensions, each list giving the dimensions along a new index that will
come out of splitting indices[i].

An example clarifies:
Suppose self has shape [dim1, dim2, dim3, dim4]. Suppose then
that indices = [1,3], dims = [[dimA, dimB], [dimC, dimD]].
Then the resulting tensor will have shape = [dim1, dimA, dimB, dim3,
dimC, dimD], assuming that that dims and are such that joining
dimA and dimB gives dim2, etc.

Instead of a list of indices a single index may be given.
Correspondingly dims should then have one level of depth less as
well.

split_indices never modifies the original tensor.

	
sqrt()

	Return the element-wise square root.

	
sum()

	Return the element-wise sum.

	
to_ndarray(**kwargs)

	Return the corresponding NumPy array, as a copy.

	
trace(axis1=0, axis2=1)

	Return the trace over indices axis1 and axis2.

	
value()

	For a scalar tensor, return the scalar. For a non-scalar one, raise
a ValueError.

TensorCommon

	
class abeliantensors.tensorcommon.TensorCommon

	Bases: object

A base class for Tensor and AbelianTensor, that implements some
higher level functions that are common to the two.

Useful also for type checking as in isinstance(T, TensorCommon).

	
classmethod default_trunc_err_func(S, chi, norm_sq=None)

	The default error function used when truncating decompositions:
L_2 norm of the discarded singular or eigenvalues S[chi:], divided
by the L_2 norm of the whole spectrum S.

A keyword argument norm_sq gives the option of specifying the
Frobneius norm manually, if for instance S isn’t the full spectrum to
start with.

	
dot(other, indices)

	Dot product of tensors.

See numpy.tensordot on how to use this, the interface is exactly the
same, except that this one is a method, not a function. The original
tensors are not modified.

	
eig(a, b, *args, return_rel_err=False, **kwargs)

	Eigenvalue decompose the tensor.

Transpose indices a to be on one side of self, b on the other,
and reshape self to a matrix. Then find the eigenvalues and
eigenvectors of this matrix, and reshape the eigenvectors to have on
the left side the indices that self had on its right side after
transposing but before reshaping.

If the keyword argument hermitian is True then the matrix that is
formed after the reshape is assumed to be hermitian.

Truncation works like with SVD.

If the keyword argument sparse is True, a sparse eigenvalue
decomposition, using power methods from scipy.sparse.eigs or eigsh,
is used. This decomposition is done to find max(chis) eigenvalues,
after which the decomposition may be truncated further if the
truncation error so allows. Thus max(chis) should be much smaller
than the full size of the matrix, if sparse is True.

Output is S, U, [rel_err], where S is a vector of eigenvalues and
U is a tensor such that the last index enumerates the eigenvectors of
self in the sense that if u_i = U[...,i] then
self.dot(u_i, (b, all_indices_of_u_i)) == S[i] * u_i.
rel_err is relative error in truncation, only returned if
return_rel_err is True.

The above syntax is precisely correct only for Tensors. For
AbelianTensors the idea is the same, but eigenvalues and vectors come
with quantum numbers so the syntax is slightly different. See
AbelianTensor.matrix_eig for more details about what precisely
happens.

The original tensor is not modified by this method.

	
classmethod empty(*args, **kwargs)

	Initialize a tensor of given form with np.empty.

	
static flatten_dim(dim)

	Given a dim for a single index that may be divided between
sectors, return a flattened dim, that has just the total dimension of
the index.

	
static flatten_shape(shape)

	Given a shape that may have dimensions divided between sectors,
return a flattened shape, that has just the total dimension of each
index.

	
form_str()

	Return a string that describes the form of the tensor: the shape,
qhape and dirs.

	
from_matrix(left_dims, right_dims, left_qims=None, right_qims=None, left_dirs=None, right_dirs=None)

	Reshape a matrix back into a tensor, given the form data for the
tensor.

The counter part of to_matrix, from_matrix takes in a matrix and
the dims, qims and dirs lists of the left and right indices that
the resulting tensor should have. Mainly meant to be used so that one
first calls to_matrix, takes note of the transposed_shape_data and
uses that to reshape the matrix back to a tensor once one is done
operating on the matrix.

	
norm()

	Return the Frobenius norm of the tensor.

	
norm_sq()

	Return the Frobenius norm squared of the tensor.

	
classmethod ones(*args, **kwargs)

	Initialize a tensor of given form with np.ones.

	
classmethod random(*args, **kwargs)

	Initialize a tensor of given form with np.random.random_sample.

	
split(a, b, *args, return_rel_err=False, return_sings=False, weight='both', **kwargs)

	Split the tensor into two with an SVD.

This is like an SVD, but takes the square root of the singular values
and multiplies both unitaries with it, so that the tensor is split into
two parts. Values are returned as
US, [S], SV, [rel_err],
where the ones in square brackets are only returned if the
corresponding arguments, return_rel_err and return_sings, are True.

The distribution of sqrt(S) onto the two sides can be changed with
the keyword argument weight. If weight="left" (correspondingly
"right") then S is multiplied into U (correspondingly V). By
default weight="both", in which the square root is evenly
distributed.

	
svd(a, b, *args, return_rel_err=False, **kwargs)

	Singular value decompose a tensor.

Transpose indices a to be on one side of self, b on the other,
and reshape self to a matrix. Then singular value decompose this
matrix into U, S, V. Finally reshape the unitary matrices to
tensors that have a new index coming from the SVD, for U as the last
index and for V as the first, and U to have indices a as its first
indices and V to have indices b as its last indices.

The optional argument chis is a list of bond dimensions. The SVD is
truncated to one of these dimensions chi, meaning that only chi
largest singular values are kept. If chis is a single integer (either
within a singleton list or just as a bare integer) this dimension is
used. If eps == 0, the largest value in chis is used. Otherwise
the smallest chi in chis is used, such that the relative error made
in the truncation is smaller than eps. The truncation error is by
default the Frobenius norm of the difference, but can be specified with
the keyword agument trunc_err_func.

An exception to the above is made by degenerate singular values. By
default truncation is never done so that some singular values are
included while others of the same value are left out. If this is about
to happen, chi is decreased so that none of the degenerate singular
values are included. This default behavior can be changed with the
keyword argument break_degenerate. The default threshold for when
singular values are considered degenerate is 1e-6. This can be changed
with the keyword argument degeneracy_eps.

If the keyword argument sparse is True, a sparse singular value
decomposition, using power methods from scipy.sparse.svds, is used.
This decomposition is done to find max(chis) singular values, after
which the decomposition may be truncated further if the truncation
error so allows. Thus max(chis) should be much smaller than the
full size of the matrix, if sparse is True.

If return_rel_err is True then the relative truncation error is also
returned.

The return value is U, S, V, [rel_err]. Here S is a vector of
singular values and U and V are isometric tensors (unitary if the
matrix that is SVDed is square and there is no truncation).
U . S.diag() . V == self, up to truncation errors.

The original tensor is not modified by this method.

	
to_matrix(left_inds, right_inds, dirs=None, return_transposed_shape_data=False)

	Reshape the tensor into a matrix.

The reshape is done by transposing left_inds to one side of self
and right_inds to the other, and joining these indices so that the
result is a matrix. On both sides, before reshaping, the indices are
also transposed to the order given in left/right_inds. If one or
both of left/right_inds is not provided the result is a vector or a
scalar.

dirs are the directions of the new indices. By default it is [1,-1]
for matrices and [1] (respectively [-1]) if only left_inds
(respectively right_inds) is provided.

If return_transposed_shape_data is True then the shape, qhape and
dirs of the tensor after all the transposing but before reshaping is
returned as well.

	
classmethod zeros(*args, **kwargs)

	Initialize a tensor of given form with np.zeros.

Index

 A
 | C
 | D
 | E
 | F
 | I
 | J
 | L
 | M
 | N
 | O
 | R
 | S
 | T
 | V
 | Z

A

 	
 	AbelianTensor (class in abeliantensors.abeliantensor)

 	abs() (abeliantensors.tensor.Tensor method)

 	all() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

 	allclose() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

 	
 	any() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

 	astype() (abeliantensors.abeliantensor.AbelianTensor method)

 	average() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

C

 	
 	check_consistency() (abeliantensors.abeliantensor.AbelianTensor method)

 	check_form_match() (abeliantensors.abeliantensor.AbelianTensor class method)

 	(abeliantensors.tensor.Tensor class method)

 	check_qhape_shape_match() (abeliantensors.abeliantensor.AbelianTensor class method)

 	check_qim_dim_match() (abeliantensors.abeliantensor.AbelianTensor class method)

 	
 	compatible_indices() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

 	conj() (abeliantensors.abeliantensor.AbelianTensor method)

 	conjugate() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

 	copy() (abeliantensors.abeliantensor.AbelianTensor method)

D

 	
 	default_trunc_err_func() (abeliantensors.tensorcommon.TensorCommon class method)

 	defblock() (abeliantensors.abeliantensor.AbelianTensor method)

 	diag() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

 	
 	dot() (abeliantensors.tensor.Tensor method)

 	(abeliantensors.tensorcommon.TensorCommon method)

E

 	
 	eig() (abeliantensors.tensorcommon.TensorCommon method)

 	empty() (abeliantensors.tensorcommon.TensorCommon class method)

 	empty_like() (abeliantensors.abeliantensor.AbelianTensor method)

 	exp() (abeliantensors.tensor.Tensor method)

 	
 	expand_dims() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

 	eye() (abeliantensors.abeliantensor.AbelianTensor class method)

 	(abeliantensors.symmetrytensors.TensorZN class method)

 	(abeliantensors.tensor.Tensor class method)

F

 	
 	fill() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

 	flatten_dim() (abeliantensors.tensorcommon.TensorCommon static method)

 	flatten_shape() (abeliantensors.tensorcommon.TensorCommon static method)

 	flip_dir() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

 	
 	form_str() (abeliantensors.tensorcommon.TensorCommon method)

 	from_matrix() (abeliantensors.tensorcommon.TensorCommon method)

 	from_ndarray() (abeliantensors.abeliantensor.AbelianTensor class method)

 	(abeliantensors.symmetrytensors.TensorZN class method)

 	(abeliantensors.tensor.Tensor class method)

I

 	
 	imag() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

 	initialize_with() (abeliantensors.abeliantensor.AbelianTensor class method)

 	(abeliantensors.symmetrytensors.TensorZN class method)

 	(abeliantensors.tensor.Tensor class method)

 	
 	is_full() (abeliantensors.abeliantensor.AbelianTensor method)

 	is_valid_key() (abeliantensors.abeliantensor.AbelianTensor method)

 	isscalar() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

J

 	
 	join_indices() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

L

 	
 	log() (abeliantensors.tensor.Tensor method)

M

 	
 	matrix_dot() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

 	matrix_eig() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

 	matrix_svd() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

 	
 	max() (abeliantensors.abeliantensor.AbelianTensor method)

 	min() (abeliantensors.abeliantensor.AbelianTensor method)

 	multiply_diag() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

N

 	
 	norm() (abeliantensors.tensorcommon.TensorCommon method)

 	
 	norm_sq() (abeliantensors.tensorcommon.TensorCommon method)

O

 	
 	ones() (abeliantensors.tensorcommon.TensorCommon class method)

R

 	
 	random() (abeliantensors.tensorcommon.TensorCommon class method)

 	
 	real() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

S

 	
 	sign() (abeliantensors.tensor.Tensor method)

 	split() (abeliantensors.tensorcommon.TensorCommon method)

 	split_indices() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.symmetrytensors.TensorZN method)

 	(abeliantensors.tensor.Tensor method)

 	
 	sqrt() (abeliantensors.tensor.Tensor method)

 	sum() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

 	svd() (abeliantensors.tensorcommon.TensorCommon method)

 	swapaxes() (abeliantensors.abeliantensor.AbelianTensor method)

T

 	
 	Tensor (class in abeliantensors.tensor)

 	TensorCommon (class in abeliantensors.tensorcommon)

 	TensorU1 (class in abeliantensors.symmetrytensors)

 	TensorZ2 (class in abeliantensors.symmetrytensors)

 	TensorZ3 (class in abeliantensors.symmetrytensors)

 	TensorZN (class in abeliantensors.symmetrytensors)

 	
 	to_matrix() (abeliantensors.tensorcommon.TensorCommon method)

 	to_ndarray() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

 	trace() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

 	transpose() (abeliantensors.abeliantensor.AbelianTensor method)

V

 	
 	value() (abeliantensors.abeliantensor.AbelianTensor method)

 	(abeliantensors.tensor.Tensor method)

 	
 	view() (abeliantensors.abeliantensor.AbelianTensor method)

Z

 	
 	zeros() (abeliantensors.tensorcommon.TensorCommon class method)

 nav.xhtml

 Table of Contents

 		
 API reference for abeliantensors

 		
 Symmetric tensor classes

 		
 AbelianTensor

 		
 Tensor

 		
 TensorCommon

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

