abeliantensors

Apr 27, 2021

Contents:

1 Symmetric tensor classes 3
2 AbelianTensor 5
3 Tensor 11
4 TensorCommon 15
Index 19
abeliantensors is a Python 3 package for symmetric tensors, as used in tensor network algorithms. For installation instructions, usage examples, and other information, see the README at github.com/mhauru/abeliantensors. This page contains the API reference of the package.

- genindex
abeliantensors

Symmetric tensor classes

class abeliantensors.symmetrytensors.TensorU1(shape, qhape=None, qodulus=None, sects $=$ None, dirs $=$ None, dtype $=<$ class 'numpy.float64'>, defval $=0$, charge $=0$, invar=True)
Bases: abeliantensors.abeliantensor.AbelianTensor
A class for $U(1)$ symmetric tensors.
See the parent class AbelianTensor for details.
class abeliantensors.symmetrytensors.TensorZ2(shape, *args, qhape=None, qodulus=None, **kwargs)
Bases: abeliantensors.symmetrytensors.TensorZN
A class for Z2 symmetric tensors.
See the parent class AbelianTensor for details.
class abeliantensors.symmetrytensors.TensorZ3(shape, *args, qhape=None, qodulus=None, **kwargs)
Bases: abeliantensors.symmetrytensors.TensorZN
A class for Z 3 symmetric tensors.
See the parent class AbelianTensor for details.
class abeliantensors.symmetrytensors.TensorZN(shape, *args, qhape=None, qodulus=None, $* * *$ wargs)
Bases: abeliantensors.abeliantensor.AbelianTensor
A symmetric tensor class for the cyclic group of order N .
See AbelianTensor for the details: A TensorZN is just an AbelianTensor for which addition of charges is done modulo N .
classmethod eye (dim, qim=None, qodulus=None, dtype $=$ <class 'numpy.float64'>)
Return the identity matrix of the given dimension dim.
classmethod from_ndarray (a, *args, shape=None, qhape=None, qodulus=None, **kwargs)
Build a TensorZN out of a given NumPy array, using the provided form data.

If qhape is not provided, it is automatically generated based on shape to be [$0, \ldots, \mathrm{~N}$] for each index. See AbelianTensor.from_ndarray for more documentation.
classmethod initialize_with(numpy_func, shape, *args, qhape=None, qodulus=None, **kwargs)
Return a tensor of the given shape, initialized with numpy_func.
split_indices (indices, dims, qims=None, dirs=None)
Split indices in the spirit of reshape.
If qhape is not provided, it is automatically generated based on shape to be [$0, \ldots, \mathrm{~N}$] for each index. See AbelianTensor.split for more documentation.

CHAPTER 2

AbelianTensor

class abeliantensors.abeliantensor.AbelianTensor(shape, qhape=None, qodulus $=$ None, sects $=$ None, dirs $=$ None, dtype $=<$ class 'numpy.float64'>, defval $=0$, charge $=0$, invar=True)
Bases: abeliantensors.tensorcommon.TensorCommon
A class for symmetry preserving tensors capabable of handling abelian symmetry groups.
This class is meant to be subclassed to implement specific symmetries, which can typically be done by simply fixing the qodulus of the class (see below).

Every AbelianTensor has the following attributes:
shape: A list of dims, one dim per index. Every dim is a list of integerers that are the dimensions of the different quantum number blocks along that indices.
qhape: A list of qims, one qim per index. Every qim is a list of unique integers that are the quantum numbers (qnums), aka charges, of that index. The quantum numbers are in one-to-one correspondence with the elements of the dims, so that qhape [i] [j] and shape [i] [j] are the qnum and dimension of the same block.
dirs: A list of integers -1 or 1 , one for each index. 1 means that the corresponding index is outgoing, -1 means incoming.
qodulus: An integer or None. If an integer, then all arithmetic on the quantum numbers is done modulo qodulus. If None then arithmetic on qnums is just usual integer arithmetic.
sects: A dict of numpy arrays, with combinations of quantum numbers as keys. Every key must a tuple of quantum numbers, one for each index, and each one of them being from the qim of that index. The value of the dict at this key is the block (or "sector" or "sect") corresponding to these quantum numbers. If the tensor is invariant under a symmetry (see invar) then only certain blocks are allowed to be set, but even in such a cause not all allowed blocks must be set. For the treatement of unset blocks see defval.
dtype: A NumPy dtype, that is the dtype of all the sects.
defval: The default value that the tensor has everywhere outside the blocks set in sects. If the tensor is a scalar with no indices then its value is its defval and it has no blocks. Note that many of the methods - such as dot and
$s v d$-require defval $==0$ (and assert this). The main use of defval $!=0$ is to be able to handle tensors of boolean values that arise in comparisons.
charge: An integer such that if invar is True then all the blocks set in sects must have keys k such that sum_i k[i]*dirs[i] \% qodulus == charge.
invar: A boolean. If True, then the tensor is invariant under the symmetry determined by qodulus, in the sense described in the definition of charge. If False, this condition is ignored and any block can be set. Note that as with defval, many methods require the tensor to be invariant and invar $==$ False is mainly used for handling vectors of singular values and eigenvalues. If invar $==$ True then defval must be 0 , unless the tensor is a scalar of charge 0 .

Note that many of these rules are not constantly checked for and can be broken by the user. In such cases behavior of the class is not guaranteed. The method check_consistency can be used to check that the tensor conforms to this definition.
all()
Check whether all of the elements of the tensor are True.
allclose (B, rtol $=1 e-05$, atol $=1 e-08$)
Check whether all of the elements of the two tensors are close to each other.
See numpy.allclose for explanations of the tolerance arguments.
any ()
Check whether any of the elements of the tensor are True.
astype (dtype, casting='unsafe', copy=True)
Change the dtype of the tensor.
By default creates a copy, but works in place if copy=False.
average() Return the average of all elements.
check_consistency()
Check internal consistency of a tensor.
Check that self conforms to the defition given in the documentation of the class. If yes, return True, otherwise raise an AssertionError. This method is meant to be used by the user (probably for debugging) and is not called anywhere in the class.
classmethod check_form_match (tensor $1=$ None, tensor $2=$ None, qhape $1=$ None, shape $1=$ None, dirs $1=$ None, qhape $2=$ None, shape $2=$ None, dirs $2=$ None, qodulus=None)
Check that the form data of two tensors match.
Check that the given two tensors have the same form in the sense that if their indices are all flipped to point in the same direction then both tensors have the same qnums for the same indices and with the same dimensions. Instead of giving two tensors, sets of qhapes, shapes, and dirs and a qodulus can also be given.
classmethod check_qhape_shape_match (qhape, shape)
Check that the given qhape and shape match, i.e. are valid for the same tensor.
classmethod check_qim_dim_match (qim, dim) Check that the given qim and dim match, i.e. are valid for the same index.
compatible_indices (other, i, j)
Return True if index i of self may be contracted with index j of other, False otherwise.
Flipping of indices is allowed (but not done, this is only a check).

```
conj()
```

Return a new tensor that is the complex conjugate of this one, with the directions of all the indices flipped and the charge of negated.

conjugate ()

Return a new tensor that is the complex conjugate of this one, with the directions of all the indices flipped and the charge of negated.
copy (memo=None, _nil=[])
Deep copy operation on arbitrary Python objects.
See the module's __doc__ string for more info.

defblock (key)

Return an NumPy array of the size of the block self [key], filled with self.defval.
This works regardless of whether self [key] is set or not and whether the block is allowed by symmetry.

diag()

Either map a square matrix to a vector of its diagonals or a vector to diagonal square matrix.
If the input is a vector (which may be non-invariant) with qhape $=$ [qim], shape $=[$ dim] and $\operatorname{dir}=[d]$, then the output is an invariant matrix with qhape $=$ [qim, qim], shape $=[$ dim, dim] and dirs $=[d,-d]$.

If the input is a matrix it should be invariant and square in the sense that its two indices are compatible, i.e. could be contracted with each other. If self. dirs $==[d, d]$ then the latter is flipped and a warning is raised. The output is then a non-invariant vector with dirs $=[d]$.

```
empty_like()
```

Initialize a tensor that is like a copy of this one, but with an empty sects.
expand_dims (axis, direction=1)
Return a view of self that has an additional index at the position axis.
This new index has only one qnum, 0 , and dimension 1 . The direction of the new index is a keyword argument direction that defaults to 1 .
classmethod eye (dim, qim=None, qodulus=None, dtype=<class 'numpy.float64'>)
Return an identity tensor of shape $=$ [dim, dim], qhape $=[$ qim, qim] and dirs $=[1$, -1].
fill (value)
Set all the elements of the tensor to be value.
This really means all, not just the ones in allowed blocks.
flip_dir (axis)
Flip the direction of the given axis of self.
The operation is not in-place, but a view is returned. The quantum numbers along given axis are also negated accordingly, so that the tensor as a whole remains the same.
classmethod from_ndarray (a, shape $=$ None, qhape $=$ None, dirs $=$ None, qodulus $=$ None, invar=True, charge=0)
Build an AbelianTensor out of a given NumPy array, using the provided form data.
Although shape and qhape are keyword arguments to maintain a common interface with Tensor, they are not optional. The blocks are read in the same order as they are written in to_ndarray, i.e. rising qnum along every index. Note hence that the ordering of the qnums in the qhape given has no effect.

imag()

Return the imaginary part.
classmethod initialize_with(numpy_func, shape, *args, qhape=None, qodulus=None, dirs $=$ None, invar $=$ True, charge $=0, * *$ kwargs $)$
Create a tensor initialized with a given numpy function.
initialize_with will be called with different numpy_funcs to create initializer functions such as zeros and random. It sets all the valid blocks of the new tensor to numpy_func (block_shape, *args, **kwargs).
is_full()
Return True if the elements in self.sects cover all the elements in self.

is_valid_key (key)

Return True if key is a valid block allowed by symmetry or self.invar is False. Otherwise False.
isscalar()
Return True is this tensor is scalar, False otherwise.
join_indices (*inds, dirs=None, return_transposed_shape_data=False)
Join indices together in the spirit of reshape.
inds is either an iterable of indices, in which case they are joined, or an iterable of iterables of indices, in which case the indices listed in each element of inds (a "batch") will be joined. So for instance inds $=[[0,1],[2,3]]$ causes the joining of both 0 and 1 , and of 2 and 3 , at the same time.

Before any joining is done the indices are transposed so that for every batch of indices to be joined the first remains in place and the others are moved to be after it in the order given. The order in which the batches are given does not matter.
dirs are the directions of the new indices, defaults to $[1, \ldots, 1]$. If a batch of indices to be joined consists of only one index, its direction will be flipped to be as in dirs.

If return_transposed_shape_data is True, then the shape, qhape and dirs (in this order) of the tensor after transposing but before reshaping are returned as well.

The method does not modify the original tensor, but returns a copy or a view.
matrix_dot (other)
Take the dot product of two tensors of order <3.
If either one is a matrix, it must be invariant and have defval $==0$.
matrix_eig (chis=None, eps=0, print_errors='deprecated', hermitian=False, break_degenerate $=$ False, degeneracy_eps $=1 e-06$, sparse $=$ False, trunc_err_func=None) Find eigenvalues and eigenvectors of a matrix.

The input must have defval $==0$, invar $==$ True, charge $==0$, and must be square in the sense that the dimensions must have the same qim and dim and opposing dirs.

If hermitian is True the matrix is assumed to be hermitian.
Truncation works like for SVD, see the docstring there for more.
If sparse is True, a sparse eigenvalue decomposition, using power methods from scipy.sparse.eigs or eigsh, is used. This decomposition is done to find max (chis) eigenvalues, after which the decomposition may be truncated further if the truncation error so allows. Thus max (chis) should be much smaller than the full size of the matrix, if sparse is True.

The return value is $S, \quad \mathrm{U}$, rel_err, where S is a non-invariant vector of eigenvalues and U is a matrix that has as its columns the eigenvectors. Both have the same dim and qim as self. rel_err is the truncation error.
matrix_svd (chis=None, eps=0, print_errors='deprecated', break_degenerate $=$ False, degeneracy_eps=1e-06, sparse=False, trunc_err_func=None)
Singular value decompose a matrix.

The matrix must have invar $==$ True and defval $==0$.
The optional argument chis is a list of bond dimensions. The SVD is truncated to one of these dimensions chi, meaning that only chi largest singular values are kept. If chis is a single integer (either within a singleton list or just as a bare integer) this dimension is used. If eps $==0$, the largest value in chis is used. Otherwise the smallest chi in chis is used, such that the relative error made in the truncation is smaller than eps. The truncation error is by default the Frobenius norm of the difference, but can be specified with the keyword agument trunc_err_func.

An exception to the above is made by degenerate singular values. By default truncation is never done so that some singular values are included while others of the same value are left out. If this is about to happen, chi is decreased so that none of the degenerate singular values are included. This default behavior can be changed with the keyword argument break_degenerate. The default threshold for when singular values are considered degenerate is 1e-6. This can be changed with the keyword argument degeneracy_eps.
If sparse is True, a sparse SVD, using power methods from scipy.sparse.svds, is used. This SVD is done to find max (chis) singular values, after which the decomposition may be truncated further if the truncation error so allows. Thus max (chis) should be much smaller than the full size of the matrix, if sparse is True.
The method returns the tuple U, S, V, rel_err, where S is a non-invariant vector and U and V are unitary matrices. They are such that $\mathrm{U} \cdot \operatorname{diag}(\mathrm{S}) \cdot \mathrm{V}==$ self, where the equality is appromixate if there is truncation. U and S have always charge 0 , but V has the same charge as self. U has dirs [d, -d] where d $=$ self.dirs [0], but V has the same dirs as self. rel_err is the truncation error.
$\max ()$
Return the maximum element.
$\min ()$
Return the minimum element.
multiply_diag (diag_vect, axis, direction='r') Multiply by a diagonal matrix on one axis.
The result of multiply_diag is the same as self. dot (diag_vect.diag(), (axis, 0)) if direction is "right" or "r" (the diagonal matrix comes from the right) or self.dot (diag_vect.diag(), (axis, 1)) if direction is "left" or " 1 ". This operation is just done without constructing the full diagonal matrix.
real ()
Return the real part.
split_indices (indices, dims, qims=None, dirs=None)
Split indices in the spirit of reshape.
indices is an iterable of indices to be split. dims is an iterable such that dim_batch=dims [i] is an iterable of lists of dimensions, each list giving the dimensions along a new index that will come out of splitting indices[i]. qims correspondingly gives the qims of the new indices, and dirs gives the new directions.

An example clarifies: Suppose self has shape [dim1, dim2, dim3, dim4], qhape [qim1, qim2, qim3, qim4], and dirs [d1, d2, d3, d4]. Suppose then that indices = [1, 3], dims $=[[d i m A, \operatorname{dimB}]$, [dimC, dimD]], qims $=[[q i m A, ~ q i m B],[q i m C, ~ q i m D]]$ and $\operatorname{dirs}=[[d A, d B][d C, d D]]$. Then the resulting tensor will have shape $[\operatorname{dim} 1, \operatorname{dimA}$, dimB, dim3, dimC, dimD], qhape [qim1, qimA, qimB, qim3, qimC, qimD], and dirs $[\mathrm{d} 1, \mathrm{dA}, \mathrm{dB}, \mathrm{d} 3, \mathrm{dC}, \mathrm{dD}]$. All this assuming that that dims and qims are such that joining qimA and $q i m B$ gives qim2, etc.
Instead of a list of indices a single index may be given. Correspondingly dims, qims and dirs should then have one level of depth less as well.
split_indices does not modify the original tensor, but returns a copy or a view.
sum ()
Return the sum of all elements.
swapaxes (i, j)
Swap two indices, return a view.
to_ndarray ()
Return a corresponding numpy array.
The order of the blocks in the result is such that along every index the blocks are organized according to rising qnum. Note that this means that the end result changes if the directions of some of the indices are flipped before calling to_ndarray. Thus if for example trace or dot is called on the resulting NumPy array, the result may be different than for the AbelianTensor if the contraction requires flipping directions. Similarly taking for example traces and diags along axes that were not compatible in the AbelianTensor is a perfectly valid thing to do for the ndarray, and gives different results.

All these concerns can be avoided by making sure that one only calls on the ndarray operations that would have been valid on the AbelianTensor without flipping any directions.

```
trace (axis 1=0, axis2=1)
```

Take a trace over axisl and axis2.
This differs from the usual trace in the sense that it is more like connecting the two indices and contracting. This means that if the indices axisl and axis2 don't have the same dim and qim the function will raise an error. If the dirs don't match (both are 1 or both are -1) then one of them is flipped and a warning is raised.

Note that the diagonal consists always of blocks with the same qnum on axis1 and axis2 (once dirs are opposite). This means that the trace of an invariant charge $!=0$ tensor is always a zero-tensor.
transpose $(p=(1,0))$
Transpose indices, return a view.
The optional argument p should be a permutation of all the indices. By default $\mathrm{p}=(1,0)$, which is the transpose of a matrix.

```
value()
```

For a scalar tensor, return the scalar.

```
view()
```

Return a view of this tensor.
A view is otherwise independent but identical to the original, but its sects points to the same numpy arrays as the sects of the original. In other words changing a whole block is ok, but modifying a block in place modifies the original as well.

Chapter 3

Tensor

class abeliantensors.tensor.Tensor

Bases: abeliantensors.tensorcommon. TensorCommon, numpy.ndarray
A wrapper class for NumPy arrays.
This class implements no new functionality beyond NumPy arrays, but simply provides them with the same interface that is used by the symmetry preserving tensor classes. Tensors always have qhape $==$ None, dirs $==$ None and charge $==0$.

Note that Tensor is a subclass of both TensorCommon and numpy.ndarray, so many NumPy functions work directly on Tensors. It's preferable to use methods of the Tensor class instead though, because it allows to easily switching to a symmetric tensor class without modifying the code.
abs ()
Return the element-wise absolute value.
all (*args, **kwargs)
Return whether all elements are True.
See numpy.ndarray.all for details.
allclose (other, *args, **kwargs)
Return whether self and other are nearly element-wise equal.
See numpy.allclose for details.
any (*args, **kwargs)
Return whether any elements are True.
See numpy.ndarray.any for details.
average ()
Return the element-wise average.
classmethod check_form_match (tensor $1=$ None, tensor $2=$ None, qhapel $=$ None, shape $1=$ None, dirs $1=$ None, qhape $2=$ None, shape $2=$ None, dirs $2=$ None, qodulus=None)
Check that the given two tensors have the same form in the sense that, i.e. that their indices have the same
dimensions. Instead of giving two tensors, two shapes can also be given.

```
compatible_indices (other, i,j)
```

Return True if index i of self and index j of other are of the same dimension.

```
conjugate()
```

Return the complex conjugate.

```
diag(**kwargs)
```

Return the diagonal of a given matrix, or a diagonal matrix with the given values on the diagonal.

```
dot (B, indices)
```

Dot product of tensors.
See numpy.tensordot on how to use this, the interface is exactly the same, except that this one is a method, not a function. The original tensors are not modified.

```
exp()
```

Return the element-wise exponential.
expand_dims (axis, direction=1)
Add to self a new singleton index, at position axis.
classmethod eye (dim, qim=None, qodulus=None, *args, **kwargs)
Return the identity matrix of the given dimension dim.
fill (value)
Fill the tensor with a scalar value.

flip_dir(axis)

A no-op, that returns a view.
The corresponding method of AbelianTensor flips the direction of an index, but directions are meaningless for Tensors.

```
classmethod from_ndarray (a,**kwargs)
```

Given an NumPy array, return the corresponding Tensor instance.

imag()

Return the imaginary part.
classmethod initialize_with(numpy_func, shape, *args, qhape=None, charge=None, invar=None, dirs=None, **kwargs)
Use the given numpy_func to initialize a tensor of shape.

isscalar()

Return whether this Tensor is a scalar.
join_indices (*inds, return_transposed_shape_data=False, **kwargs)
Join indices together in the spirit of reshape.
inds is either a iterable of indices, in which case they are joined, or a iterable of iterables of indices, in which case the indices listed in each element of inds will be joined.

Before any joining is done the indices are transposed so that for every batch of indices to be joined the first remains in place and the others are moved to be after in the order given. The order in which the batches are given does not matter.

If return_transposed_shape_data is True, then the shape of the tensor after transposing but before reshaping is returned as well, in addition to None and None, that take the place of transposed_qhape and transposed_dirs of AbelianTensor.

The method does not modify the original tensor.
$\log ()$
Return the element-wise natural logarithm.

matrix_dot (B)

Take the dot product of two tensors of order <3 (i.e. vectors or matrices).
matrix_eig (chis=None, eps=0, print_errors='deprecated', hermitian=False, break_degenerate $=$ False, degeneracy_eps $=1 e-06$, sparse $=$ False, trunc_err_func=None)
Find eigenvalues and eigenvectors of a matrix.
The input must be a square matrix.
If hermitian is True the matrix is assumed to be hermitian.
Truncation works like for SVD, see the documentation there for more.
If sparse is True, a sparse eigenvalue decomposition, using power methods from scipy.sparse.eigs or eigsh, is used. This decomposition is done to find max (chis) eigenvalues, after which the decomposition may be truncated further if the truncation error so allows. Thus max (chis) should be much smaller than the full size of the matrix, if sparse is True.

The return values is $S, \quad U$, rel_err, where S is a vector of eigenvalues and U is a matrix that has as its columns the eigenvectors. rel_err is the truncation error.
matrix_svd (chis=None, eps=0, print_errors='deprecated', break_degenerate $=$ False, degeneracy_eps=1e-06, sparse=False, trunc_err_func=None)
Singular value decompose a matrix.
The optional argument chis is a list of bond dimensions. The SVD is truncated to one of these dimensions chi, meaning that only chi largest singular values are kept. If chis is a single integer (either within a singleton list or just as a bare integer) this dimension is used. If eps $==0$, the largest value in chis is used. Otherwise the smallest chi in chis is used, such that the relative error made in the truncation is smaller than eps. The truncation error is by default the Frobenius norm of the difference, but can be specified with the keyword agument trunc_err_func.
An exception to the above is made by degenerate singular values. By default truncation is never done so that some singular values are included while others of the same value are left out. If this is about to happen, chi is decreased so that none of the degenerate singular values are included. This default behavior can be changed with the keyword argument break_degenerate. The default threshold for when singular values are considered degenerate is 1e-6. This can be changed with the keyword argument degeneracy_eps.

If sparse is True, a sparse SVD, using power methods from scipy.sparse.svds, is used. This SVD is done to find max (chis) singular values, after which the decomposition may be truncated further if the truncation error so allows. Thus max (chis) should be much smaller than the full size of the matrix, if sparse is True.

The return value is "U, S, V, rel_err", where S is a vector and U and V are unitary matrices. They are such that $U . \operatorname{diag}(S) \cdot V==$ self, where the equality is appromixate if there is truncation. rel_err is the truncation error.
multiply_diag (diag_vect, axis, *args, **kwargs)
Multiply by a diagonal matrix on one axis.
The result of multiply_diag is the same as self.dot (diag_vect.diag(), (axis, 0)) This operation is just done without constructing the full diagonal matrix.
real()
Return the real part.
sign()
Return the element-wise sign.
split_indices (indices, dims, qims=None, **kwargs)
Splits indices in the spirit of reshape.
indices is an iterable of indices to be split. dims is an iterable of iterables such that dims [i] is an iterable of lists of dimensions, each list giving the dimensions along a new index that will come out of splitting indices[i].

An example clarifies: Suppose self has shape [dim1, dim2, dim3, dim4]. Suppose then that indices $=[1,3]$, dims $=[[d i m A, \operatorname{dimB}],[d i m C, \operatorname{dimD}]]$. Then the resulting tensor will have shape $=[\operatorname{dim1}, \operatorname{dimA}, \operatorname{dimB}, \operatorname{dim} 3, \operatorname{dimC}, \operatorname{dimD}]$, assuming that that dims and are such that joining $\operatorname{dim} A$ and $\operatorname{dim} B$ gives $\operatorname{dim} 2$, etc.

Instead of a list of indices a single index may be given. Correspondingly dims should then have one level of depth less as well.
split_indices never modifies the original tensor.
sqrt ()
Return the element-wise square root.
sum ()
Return the element-wise sum.
to_ndarray (**kwargs)
Return the corresponding NumPy array, as a copy.
trace (axis1=0, axis2=1)
Return the trace over indices axis1 and axis2.
value()
For a scalar tensor, return the scalar. For a non-scalar one, raise a ValueError.

CHAPTER 4

TensorCommon

class abeliantensors.tensorcommon.TensorCommon
Bases: object
A base class for Tensor and AbelianTensor, that implements some higher level functions that are common to the two.

Useful also for type checking as in isinstance (T, TensorCommon).
classmethod default_trunc_err_func (S, chi, norm_sq=None)
The default error function used when truncating decompositions: L_2 norm of the discarded singular or eigenvalues S [chi:], divided by the L_2 norm of the whole spectrum S.
A keyword argument norm_sq gives the option of specifying the Frobneius norm manually, if for instance S isn't the full spectrum to start with.
dot (other, indices)
Dot product of tensors.
See numpy.tensordot on how to use this, the interface is exactly the same, except that this one is a method, not a function. The original tensors are not modified.
eig (a, b, *args, return_rel_err=False, **kwargs)
Eigenvalue decompose the tensor.
Transpose indices a to be on one side of self, b on the other, and reshape self to a matrix. Then find the eigenvalues and eigenvectors of this matrix, and reshape the eigenvectors to have on the left side the indices that self had on its right side after transposing but before reshaping.
If the keyword argument hermitian is True then the matrix that is formed after the reshape is assumed to be hermitian.

Truncation works like with SVD.
If the keyword argument sparse is True, a sparse eigenvalue decomposition, using power methods from scipy.sparse.eigs or eigsh, is used. This decomposition is done to find max (chis) eigenvalues, after which the decomposition may be truncated further if the truncation error so allows. Thus max (chis) should be much smaller than the full size of the matrix, if sparse is True.

Output is $S, \quad U, \quad\left[r e l _e r r\right]$, where S is a vector of eigenvalues and U is a tensor such that the last index enumerates the eigenvectors of self in the sense that if $u _i=U[\ldots, i]$ then self.dot(u_i, (b, all_indices_of_u_i)) == S[i] * u_i. rel_err is relative error in truncation, only returned if return_rel_err is True.

The above syntax is precisely correct only for Tensors. For AbelianTensors the idea is the same, but eigenvalues and vectors come with quantum numbers so the syntax is slightly different. See AbelianTensor.matrix_eig for more details about what precisely happens.

The original tensor is not modified by this method.

```
classmethod empty(*args, **kwargs)
```

Initialize a tensor of given form with np.empty.

static flatten_dim(dim)

Given a dim for a single index that may be divided between sectors, return a flattened dim, that has just the total dimension of the index.

static flatten_shape (shape)

Given a shape that may have dimensions divided between sectors, return a flattened shape, that has just the total dimension of each index.

```
form_str()
```

Return a string that describes the form of the tensor: the shape, qhape and dirs.

```
from_matrix(left_dims, right_dims, left_qims=None, right_qims=None, left_dirs=None,
```

 right_dirs=None)
 Reshape a matrix back into a tensor, given the form data for the tensor.
The counter part of to_matrix, from_matrix takes in a matrix and the dims, qims and dirs lists of the left and right indices that the resulting tensor should have. Mainly meant to be used so that one first calls to_matrix, takes note of the transposed_shape_data and uses that to reshape the matrix back to a tensor once one is done operating on the matrix.

```
norm()
```

Return the Frobenius norm of the tensor.

```
norm_sq()
```

Return the Frobenius norm squared of the tensor.

```
classmethod ones (*args, **kwargs)
```

Initialize a tensor of given form with np.ones.

```
classmethod random(*args, **kwargs)
```

Initialize a tensor of given form with np.random.random_sample.
split (a, b, *args, return_rel_err=False, return_sings=False, weight='both', **kwargs)
Split the tensor into two with an SVD.
This is like an SVD, but takes the square root of the singular values and multiplies both unitaries with it, so that the tensor is split into two parts. Values are returned as US, [S], SV, [rel_err], where the ones in square brackets are only returned if the corresponding arguments, return_rel_err and return_sings, are True.

The distribution of sqre (S) onto the two sides can be changed with the keyword argument weight. If weight="left" (correspondingly "right") then S is multiplied into U (correspondingly V). By default weight="both", in which the square root is evenly distributed.
svd (a, b, *args, return_rel_err=False, **kwargs)
Singular value decompose a tensor.
Transpose indices a to be on one side of self, b on the other, and reshape self to a matrix. Then singular value decompose this matrix into U, S, V. Finally reshape the unitary matrices to tensors that have a
new index coming from the SVD, for U as the last index and for V as the first, and U to have indices a as its first indices and V to have indices b as its last indices.

The optional argument chis is a list of bond dimensions. The SVD is truncated to one of these dimensions chi, meaning that only chi largest singular values are kept. If chis is a single integer (either within a singleton list or just as a bare integer) this dimension is used. If eps $==0$, the largest value in chis is used. Otherwise the smallest chi in chis is used, such that the relative error made in the truncation is smaller than eps. The truncation error is by default the Frobenius norm of the difference, but can be specified with the keyword agument trunc_err_func.

An exception to the above is made by degenerate singular values. By default truncation is never done so that some singular values are included while others of the same value are left out. If this is about to happen, chi is decreased so that none of the degenerate singular values are included. This default behavior can be changed with the keyword argument break_degenerate. The default threshold for when singular values are considered degenerate is 1e-6. This can be changed with the keyword argument degeneracy_eps.
If the keyword argument sparse is True, a sparse singular value decomposition, using power methods from scipy.sparse.svds, is used. This decomposition is done to find max (chis) singular values, after which the decomposition may be truncated further if the truncation error so allows. Thus max (chis) should be much smaller than the full size of the matrix, if sparse is True.

If return_rel_err is True then the relative truncation error is also returned.
The return value is U, S, V, [rel_err]. Here S is a vector of singular values and U and V are isometric tensors (unitary if the matrix that is SVDed is square and there is no truncation). U . S. diag () . V == self, up to truncation errors.

The original tensor is not modified by this method.
to_matrix (left_inds, right_inds, dirs=None, return_transposed_shape_data=False)
Reshape the tensor into a matrix.
The reshape is done by transposing left_inds to one side of self and right_inds to the other, and joining these indices so that the result is a matrix. On both sides, before reshaping, the indices are also transposed to the order given in left/right_inds. If one or both of left/right_inds is not provided the result is a vector or a scalar.
dirs are the directions of the new indices. By default it is [1,-1] for matrices and [1] (respectively [-1]) if only left_inds (respectively right_inds) is provided.

If return_transposed_shape_data is True then the shape, qhape and dirs of the tensor after all the transposing but before reshaping is returned as well.
classmethod zeros (*args, **kwargs)
Initialize a tensor of given form with np.zeros.
abeliantensors

A


```
R
random() (abelianten-
        sors.tensorcommon.TensorCommon class
        method),16
real() (abeliantensors.abeliantensor.AbelianTensor
            method), }
real()(abeliantensors.tensor.Tensor method),13
S
sign()(abeliantensors.tensor.Tensor method),13
split()
(abelianten-
    sors.tensorcommon.TensorCommon method),
        16
split_indices() (abelianten-
        sors.abeliantensor.AbelianTensor method),
        9
split_indices() (abelianten-
        sors.symmetrytensors.TensorZN method),
        4
split_indices() (abeliantensors.tensor.Tensor
        method),13
sqrt()(abeliantensors.tensor.Tensor method),14
sum() (abeliantensors.abeliantensor.AbelianTensor
        method),10
sum() (abeliantensors.tensor.Tensor method),14
svd() (abeliantensors.tensorcommon.TensorCommon
        method),16
swapaxes() (abelianten-
        sors.abeliantensor.AbelianTensor method),
        10
```


T

```
Tensor (class in abeliantensors.tensor), 11
TensorCommon (class in abeliantensors.tensorcommon), 15
TensorU1 (class in abeliantensors.symmetrytensors), 3
TensorZ2 (class in abeliantensors.symmetrytensors), 3
TensorZ3 (class in abeliantensors.symmetrytensors), 3
TensorZN (class in abeliantensors.symmetrytensors), 3
to_matrix() (abeliantensors.tensorcommon.TensorCommon method), 17
to_ndarray() (abeliantensors.abeliantensor.AbelianTensor method), 10
to_ndarray() (abeliantensors.tensor.Tensor method), 14
trace () (abeliantensors.abeliantensor.AbelianTensor method), 10
trace () (abeliantensors.tensor.Tensor method), 14
transpose() (abeliantensors.abeliantensor.AbelianTensor method), 10
```

